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Enumeration of Isomorphism Classes

Statement of the problem

1 Let K be a local field of characteristic p with residue field k of
order q, where q is p-power.

2 Let Eλ be the set of all totally ramified extensions L/K of
degree p in Ks with ramification break λ.

3 Say L1/K , L2/K are k-isomorphic if there exists an
isomorphism ϕ : L1 → L2 such that ϕ(K ) = K and ϕ is the
identity on k.

4 We would like to enumerate the k-isomorphism classes of Eλ.



Enumeration of Isomorphism Classes

L1/K ∼=k L2/K

L1
ϕ // L2

K
ϕ|K∈ Autk (K) // K

k
ϕ|k=idk // k



Enumeration of Isomorphism Classes

Theorem

Let λ ∈ 1

p − 1
N, and let d be the denominator of λ when it is in

reduced form. Define Sλ to be the set of k-isomorphism classes of
Eλ. Then we have

|Sλ| = (p − 1) gcd

(
q − 1

p − 1
, dλ

)
.



Enumeration of Isomorphism Classes

Theorem

Define Sgλ (resp. Sngλ ) to be the set of k-isomorphism classes of
degree p totally ramified Galois (resp. non-Galois) extensions with
ramification break λ. Then, if λ is an integer, we have

(i)
∣∣Sgλ ∣∣ = gcd

(
q − 1

p − 1
, λ

)
and

(ii) |Sngλ | = (p − 2) gcd

(
q − 1

p − 1
, λ

)
, while

(iii) |Sngλ | = (p − 1) gcd

(
q − 1

p − 1
, dλ

)
if λ is not an integer.



Outline of Attack on the Problem

Group of automorphisms

1 Let A =Autk(K ).

2 Let U1,K = 1 + πKOK , where πK is a prime element of K .

3 ϕ ∈ A is defined by its action on πK .

4 ϕ(πK ) = avϕπK , where a ∈ k× and vϕ ∈ U1,K .



Outline of Attack on the Problem

Strategy of attack

1 Find an Eisenstein polynomial in a standard form
corresponding to each L/K ∈ Eλ. Let Pλ be the set of all
such Eisenstein polynomials.

2 For f (X ), g(X ) ∈ Pλ, we denote f (X ) ∼ g(X ) if
K [X ]/(f (X )) ∼= K [X ]/(g(X )).

3 Let ϕ ∈ A and f (X ) = X p + ap−1X
p−1 + · · ·+ a1X + a0.

Define

ϕ(f (X )) = X p + ϕ(ap−1)X p−1 + . . .+ ϕ(a1)X + ϕ(a0).

4 Enumerating the k-isomorphism classes of Eλ is equivalent to
enumerating the orbits of the action of A on Pλ/ ∼.



The Work of Amano

Invariants of L/K

1 A prime element πL ∈ L satisfies an Eisenstein polynomial

f (X ) = X p −
p−1∑
i=1

aiX
i − πKa0, with a0 ∈ U1,K .

2 Set m = min{νK (a1), . . . , νK (ap−1)}, where νK is the
valuation of Ks such that νK (πK ) = 1. Denote by n the least
positive integer such that νK (an) = m. Let ω ∈ k× be such
that νK (an − ωπmK ) > νK (an).

3 n,m, ω are invariants of L/K . We say that L/K has type
(n,m, ω).

4 We can write λ =
(m − 1)p + n

p − 1
, where 1 ≤ n ≤ p − 1.



The Work of Amano

L ∼= K [X ]/(Aω,u(X )), where Aω,u(X ) = X p − ωπmKX n − uπK ,
where u ∈ U1,K and ω ∈ k×.

5 For each prime element π of L, define
ψ(π) = πp − ωπmK πn − NL/K (π).

6 Let νL be the valuation of Ks normalized on L. If ψ(π1) 6= 0,
then there exists a prime element π2 of L such that
νL(ψ(π2)) > νL(ψ(π1)).

7 Let π ∈ L be such that νL(π) > p(λ+ 1). Let
πKa = NL/K (π) for some a ∈ U1,K .

8 For 1 ≤ i ≤ p, let π(i) be the roots of
Aω,a(X ) = X p − ωπmKX n − πKa. Then we find that
νL(π − π(j)) > λ+ 1 for some j . It follows that L = K (π(j))
by Krasner’s Lemma.



The Work of Amano

L/K is Galois if and only λ is an integer and nω ∈ (k×)p−1.

1 We show that if λ is an integer, then L/K is Galois exactly
when nω ∈ (k×)p−1.

2 Write L = K (π1), where π1 is a root of the Amano
polynomial Aω,u(X ). Let π2 6= π1 be a conjugate of π1. We
can write π2 = π1(1 + πλ1Y ) for some unit Y ∈ Ks .

3 π2 ∈ L exactly when Y ∈ L.

4 Using the fact that π1, π2 are roots of Aω,u(X ), we find that

Y p −
∑p

i=1

(n
i

)
ωπmK π

λ(i−1)−pm
1 Y i = 0.

5 We find that Y p − nωY ≡ 0 (mod π1).



Action on Amano Polynomials

Outline of proof

1 Let Pλ = {X p − ωπmKX n − uπK : ω ∈ k×, u ∈ U1,K}.
2 Let ϕ ∈ A and let Aω,u(X ) = X p − ωπmKX n − uπK ∈ Pλ.

3 There exist ω′, u′ such that

K [X ]/(ϕ(Aω,u(X )) ∼= K [X ]/(Aω′,u′(X )).

4 Define action of A on Pλ/ ∼ by

ϕ · [Aω,u(X )] = [Aω′,u′(X )].



Action on Amano Polynomials

Outline of proof

5 We find that
Aω,u(X ) ∼ Aωa(p−1)λ,v (X ),

for all a ∈ k× and v ∈ U1,K .

6 Let
{r1, r2, ..., rp−2, rp−1}

be a set of representatives of k×/(k×)p−1. Assume without
loss of generality that r1 = 1.

7 Write nω = ri t
p−1, for some ri and t ∈ k×.

8 Recall that L/K is Galois if and only λ is an integer and
nω ∈ (k×)p−1.



Action on Amano Polynomials

Outline of proof

9 Cardinality of Sgλ for λ ∈ Z.

(a) If ri 6= 1, then nω 6∈ (k×)p−1, which implies L/K not Galois.
(b) Hence, ri = 1.
(c) |Sgλ | = |(k×)p−1/(k×)λ(p−1)|.

10 Cardinality of Sngλ for λ ∈ Z.

(a) We want ri 6= 1, else nω ∈ (k×)p−1, which implies L/K is
Galois.

(b) There are p − 2 choices for ri .
(c) |Sngλ | = (p − 2)|(k×)p−1/(k×)λ(p−1)|.

11 Cardinality of Sngλ for λ 6∈ Z.

(a) There are p − 1 choices for ri .
(b) |Sngλ | = (p − 1)|(k×)p−1/(k×)λ(p−1)|.
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